Mechanical Properties

- Elastic deformation
- Plastic deformation
- Fracture
II. Stable Plastic Deformation

- Stress-strain relation is non-linear
- Strain is non-recoverable
 - Relaxation is elastic \(\Rightarrow \) permanent plastic strain
 - Strain is uniform and stable - “work hardening”
- Plasticity initiates at “yield strength”, \(s_y \)
 - In ductile material, \(s_y \) is not obvious
 - \(s_y \) is usually defined by “0.2% offset strain”
 - Yield strength = stress that produces a plastic strain of 0.2%

For a typical ductile metal:
I. Elastic deformation
II. Stable plastic deformation
III. Unstable deformation
IV. Fracture
Forms of the Engineering Stress-Strain Curve

Ductile metal

Brittle solid

Yield point

Elastomer
True Stress and Strain

- True strain is defined from its differential
 \[d\varepsilon = \frac{dL}{L} = -\frac{dA}{A} \]
 \[\varepsilon = \int_{L_0}^{L} \frac{dL}{L} \Rightarrow \varepsilon = \ln\left(\frac{L}{L_0}\right) = \ln\left(\frac{A_0}{A}\right) \]
 \[\varepsilon = \ln\left[\frac{\Delta L}{L_0} + 1\right] \Rightarrow \varepsilon = \ln(1 + e) \]
 - \(\frac{L}{L_0} \) applies when strain is uniform
 - \(\frac{A_0}{A} \) can be used for non-uniform strain

- True stress
 \[\sigma = \frac{P}{A} = \frac{P}{A_0}\left(\frac{A_0}{A}\right) = s\left(\frac{L}{L_0}\right) \]
 \[\sigma = s(1 + e) \]

V = constant (plastic deformation):

\[V = A_0L_0 = AL \]
\[dV = 0 = AdL + LdA \]
\[\ldots \Rightarrow \frac{dL}{L} = -\frac{dA}{A} \]

\[e = \text{engineering strain} \]
\[e = \frac{\Delta L}{L_0} = \frac{L}{L_0} - 1 \]

JW. Morris, Jr.
University of California, Berkeley

MSE 200A
Fall, 2008
Stress-Strain Relations

- Stress-strain relations
 \[\sigma = s(1 + e) \]
 \[\varepsilon = \ln(1 + e) \]
 \[s = \sigma \exp(-\varepsilon) \]
 \[e = \exp(\varepsilon) - 1 \]
 - stresses equal for small strain

- Why use engineering curve?
 - Clearly shows tensile strength
 - \(s_u \) is an important design value
 - No difference in \(E \), \(s_y = \sigma_y \)
Plastic Deformation: Engineering Significance

- Design: yield strength
 - Almost all structures operate well below yield

- Design: ultimate strength
 - Plastic instability limits the capability of ductile materials

- Manufacture: formability
 - Plasticity is used to form materials into complex shapes

- Service: failure resistance and failure analysis
 - Plasticity provides margin against fracture
 - Deformation patterns record load history
Plastic Deformation Mechanisms

- **Dislocation plasticity** *(our focus in this course)*
 - Dislocation motion causes shear
 - The dominant mechanism of plasticity

- **Diffusion**
 - Atoms diffuse to regions of high stress
 - Most important in high temperature creep *(“diffusional creep”)*

- **Structural phase transformation**
 - Structural transformations can cause shape change *(martensite)*
 - TRIP steel *(“transformation-induced plasticity”)*

- **Grain boundary sliding**
 - Groups of grains tumble by sliding on boundaries
 - “Superplasticity”: rapid creep to deformations of 1000% or more
Example: Indentation of an Al Grain
Indentation Deformation Sequence

\[b = \frac{a}{2} \langle 110 \rangle \]
The Force on a Dislocation

- Dislocation bounds an area that has slipped
 - Material is sheared by \(b \) when it moves normal to its line
 - The force on the dislocation is \(F = \tau b \)
 - \(\tau \) is the shear stress in the direction of \(b \)
 - Local \(F \) is normal to the line, \textit{whatever} the dislocation shape

- Assume a set of dislocations, \(b \), move an average \(<\delta x>\)
 - If \(\rho \) is the “dislocation density” (line length/unit volume)
 - The strain is \(\gamma = \rho b <\delta x> \)
Plastic Deformation in Shear

- Dislocations cause shear
 - Shear stress required to drive plasticity
 - Hydrostatic stress does not cause plastic deformation

- Yield stress in tension (σ_y) is determined by critical shear stress (τ_c)
The Critical Resolved Shear Stress

- How does tension (σ) cause shear (τ)
 - Assume tensile stress, σ, along axis
 - Assume glide plane normal at angle, θ
 - Assume Burgers vector at angle, ϕ
 - The “resolved shear stress” is

\[
\tau = \frac{P_b}{A_\theta} = \frac{P \cos(\varphi)}{A \cos(\theta)} = \sigma \cos(\theta) \cos(\varphi)
\]

\[\tau \leq \sigma / 2\]

- Dislocations move when \(\tau = \tau_c\)
 - \(\tau_c\) = “critical resolved shear stress”

- Yield strength, \(\sigma_y\), is such that
 - \(\tau \geq \tau_c\) on the most favorable plane
Yield under Tension

- **Yield strength, σ_y, is such that**
 - $\tau \geq \tau_c$ on the most favorable plane

 \[\sigma_y = \frac{\tau_c}{\cos(\theta)\cos(\varphi)} \]

 $\sigma_y \geq 2\tau_c$
 - Note τ_c is a material property, not σ_y

- **Tensile deformation by slip**
 - The slip planes are angled to the bar
 - Slip causes elongation as shown
 - Many slip planes
 \[\Rightarrow \text{uniform elongation of the bar} \]
Plastic deformation of a polycrystal
- Many grains in all orientations
- Slip in the grain best aligned
- Causes
 - Incremental plastic deformation
 - High stress is adjacent grains
- Deformed regions grow
 - Gradual increase in ε_p
 - Eventual large-scale plasticity

Results
- Gradual yielding
 - Measured by 0.2% offset
- Yield exceeds minimum

\[\sigma_y = k_T \tau_c \]

(k_T = “Taylor factor” ~ 3)
Microstructural Control of the Strength

• Add things that inhibit dislocation glide

• Microstructural mechanisms:
 – Crystal structure
 • Make lattice resist dislocation motion (Peierls-Nabarro stress)
 – Refine grain size
 • $\sigma_y \propto d^{-1/2}$
 – Introduce obstacles into grains
 • Solute atoms
 • Other dislocations (work hardening)
 • Precipitates
Inherent Strength: The Peierls-Nabarro Stress

- Lattice resistance to glide
 \[\tau_p = \frac{2G}{1-\nu} \exp \left[\frac{2\pi d}{b(1-\nu)} \right] \]
 - \(d = \) distance between slip planes

- Inherently hard materials:
 - High \(G \)
 - Small \(\nu \)
 - Large \((d/b)\) (complex structure)
 - Diamond
 - Si
 - SiO\(_2\)
Grain Refinement

- Grain boundaries resist glide
 - Slip planes not continuous
 - Defect absorption at boundaries

- Hall-Petch relation
 \[\sigma = \sigma_0 + Kd^{-1/2} \]
 Ex: iron

- Control of grain size
 - Recrystallization in metals
 - Recrystallize and quench
 - Fine-grained powder in ceramics
Ductility Lost at Nanograin Size

Decreasing grain size
⇒ σ_y increases
⇒ ε_u vanishes
Obstacle Hardening

- Force on dislocation:
 - \(f = \tau b \)

- Dislocation bows between obstacles:
 - \(R = \frac{T}{\tau b} \sim \frac{Gb}{2\tau} \)

- Obstacle experiences force:
 - \(f = 2T\cos\left(\frac{\psi}{2}\right) = 2T\beta \)

- When \(\beta = \beta_c \), dislocation cuts through

\[
\tau_c = \frac{2T}{L_b} \beta_c^{3/2} = Gb\beta_c^{3/2} \sqrt{n}
\]

Random distribution of obstacles:

- \(T = \text{line tension} \)
- \(n = \text{obstacle density} \)
- \(\beta = \cos\left(\frac{\psi}{2}\right) \)
Obstacle Hardening

Random distribution of obstacles:

\[\tau_c = \frac{2T}{L_s b} \beta_c^{3/2} = Gb \beta_c^{3/2} \sqrt{n} \]

- Solute atoms:
 - \(\beta_c \sim 0.01 \)
 - \(n = c \) (concentration)

- Dislocations:
 - \(\beta_c \sim 0.1 \)
 - \(n = \rho \) (dislocation density)

- Precipitates
 - \(\beta_c \sim 0.7 \)
 - \(\sqrt{n} = (1/L_s) \) (obstacle spacing)
Solute Hardening

- Solute have misfit strain
 - Interacts with dislocation field
 - Large solute repels compression
 - Small solute repels tension

- Strength proportional to misfit
 - Interstitial solutes have greatest effect
 - C, N in iron
 - Strength proportional to
 - $c^{1/2}$ when c is small
 - $c^{2/3}$ for larger c (solute overlap)
 - At high T, solutes are mobile
 - Strength lost

\[\sigma_y \propto \sqrt{c} \]

interstitial

substitutional

\[\sqrt{c} \]
Dislocation Hardening

- Dislocations are
 - Crystallographic obstacles
 - Elastic obstacles

- “Forest dislocations” harden

$$\sigma_y = \alpha G b \sqrt{\rho}$$

$$\alpha \sim 3 \beta_c^{3/2} \sim 0.3$$

- “Work hardening”
 - Dislocations multiply during strain

$$\frac{d\sigma}{d\varepsilon} = \frac{\alpha G b}{2\sqrt{\rho}} \left(\frac{d\rho}{d\varepsilon} \right)$$
Work Hardening

- Dislocations are
 - Crystallographic obstacles
 - Elastic obstacles

- “Forest dislocations” harden
 \[\sigma_y = \alpha Gb \sqrt{\rho} \]
 \[\alpha \sim 3 \beta_c^{3/2} \sim 0.3 \]

- “Work hardening”
 - Dislocations multiply during strain
 \[\frac{d\sigma}{d\varepsilon} = \frac{\alpha Gb}{2\sqrt{\rho}} \left(\frac{d\rho}{d\varepsilon} \right) \]
Precipitation Hardening

Create precipitates

\[\tau_c = G b \beta_c^{3/2} \sqrt{n} \]

- \(\beta_c \sim 0.5-0.7 \)

“Age hardening”
- Hardens because \(\beta_c \) increases
- Softens when
 - \(\beta_c = \text{max} \) (obstacle impenetrable)
 - \(n \) decreases under coarsening