The Electromagnetic Properties of Materials

• Electrical conduction
 – Metals
 – Semiconductors
 – Insulators (dielectrics)
 – Superconductors

• Magnetic materials
 – Ferromagnetic materials
 – Others

• Photonic Materials (optical)
 – Transmission of light
 – Photoactive materials
 • Photodetectors and photoconductors
 • Light emitters: LED, lasers
The Optical Properties of Materials: Photonic Materials

• “Optical” means the whole electromagnetic spectrum
 – From radio waves to γ-rays
 – Can be regarded as
 • Waves in space
 • Particles with quantized energies

• Light as waves
 – Refraction and reflection at an interface (windows, light pipes, solarium)
 – Absorption and scattering (optical fibers)
 – Diffraction (x-ray and electron crystallography)

• Light as particles
 – Transmission and absorption
 – Photodetectors and photoconductors: switches, photocopiers
 – Photoemitters: LEDs and lasers
Light as a Particle: Photons

- Transparency and color

- Photodetectors
 - Photoconductors
 - Photoelectronics
 - Photocopiers

- Photoemitters
 - Phosphors
 - Light-emitting diodes (LED)
 - Lasers
Light as a Particle: Photons

- Transparency and color
- Photodetectors
 - Photoconductors
 - Photoelectronics
 - Photocopiers
- Photoemitters
 - Phosphors
 - Light-emitting diodes (LED)
 - Lasers
Transparency and Color

- Materials are opaque to all radiation for which $\hbar \omega > E_G$
 - All materials with $E_G < \text{about 2.5 eV}$ are opaque to visible light

- Radiation with $h\nu = E_i$ is also absorbed
 - For all internal excitations (donors, acceptors, ionic excitations)
 - Leads to “colored” or “dimmed” light
Light as a Particle: Photons

- Transparency and color

- Photodetectors
 - Photoconductors
 - Photoelectronics
 - Photocopiers

- Photoemitters
 - Phosphors
 - Light-emitting diodes (LED)
 - Lasers
Photoconductivity

- Light of suitable wavelength excites carriers
 - $\sigma = n\varepsilon\mu$ (n = steady state density from optical excitations)
 - Semiconductor or insulator becomes metal

- Note two kinds of semiconductor
 - “direct gap” produces carriers at E_G
 - “indirect gap” excitation requires phonons at $E<E_d$ - messy behavior
Photoconductors

- Light creates current
 - “Electric eye” circuits
 - Photodetectors (need multiple conductors to detect frequency)

- Photoelectronic transistors
 - Switch “on” when light “on”
 - Illumination plays the part of positive voltage at the base
Photocopiers

- Charge photoconductor plate
- Reflect light from page
 - Reflection from white spaces
 - Removes charge
 ⇒ Creates map of original print
- Pass through “toner”
 - Ink sticks to charge on plate
- Print
 - Press against paper to transfer ink
 ⇒ Faithful copy of original
- Color copying
 - Passes for the 3 primary colors
Light as a Particle: Photons

- Transparency and color
- Photodetectors
 - Photoconductors
 - Photoelectronics
 - Photocopiers
- Photoemitters
 - Phosphors
 - Light-emitting diodes (LED)
 - Lasers
Photoemitters: Phosphors

- A phosphor is an ionic emitter
 - Incident radiation ($\hbar\omega_i = E_i$) excites ion
 - Excited ion relaxes in lattice, changing energy
 - Excited state returns to ground state, emitting photon with $E_e = \hbar\omega'$
 - Since $\omega' \neq \omega_i$, photon is emitted from the material

- Phosphors used in monitors, etc.
 - Multiple phosphors used for color images
Photoemitters: Light Emitting Diodes (LED)

- To generate light from a p-n junction:
 - Use a “direct-gap” semiconductor in forward bias
 - Charge recombinations generate photons

- “Color” set by band gap
 - Long search for “blue” LED solved by GaN
Lasers:
Light Amplification by Stimulated Emission of Radiation

- **Three-level laser** (ruby):
 - Excite with incident radiation
 - Transition to level with difficult transition to ground state (inverted population)
 - Transitions stimulate further transitions, create beam of photons “in phase”

- **Light emission from laser**
 - Mirrors used for multiple reflections to amplify “in phase” beam
 - Mechanism such as “half-silvered” mirror to emit amplified light
Lasers:
Four-Level Lasers

- Three-level laser: Problem
 - $\hbar \omega_{13}$ can stimulate transition 1 \rightarrow 3
 - One photon lost for each transition - loss of efficiency

- Four-level laser: Solution
 - Lasing transition to transient state 4
 - Immediate transition 4 \rightarrow 1 empties level 4
 \Rightarrow High efficiency since $\hbar \omega_{14}$ has nothing to excite
Semiconductor Lasers

- Use direct-gap semiconductor (GaAs)
 - Note GaAs gap such that “light” is infrared
- Create “well” where electrons are trapped
- Pump high density of carriers \(\Rightarrow \) exceed recombination rate
- Recombination enhanced by stimulated emission \(\Rightarrow \) laser

Heterojunction GaAs Laser
The Electromagnetic Properties of Materials

- **Electrical conduction**
 - Metals
 - Semiconductors
 - Insulators (dielectrics)
 - Superconductors

- **Magnetic materials**
 - Ferromagnetic materials
 - Others

- **Photonic Materials (optical)**
 - Transmission of light
 - Photoactive materials
 - Photodetectors and photoconductors
 - Light emitters: LED, lasers
Magnetic Materials

• Sources of magnetism
 – Unpaired electrons
 • Inner core: transition metals and rare earth elements
 • Electron bands (secondary)
 – Electron orbit (secondary)

• Types of magnetism
 – Diamagnetism:
 • Electron orbit changed in magnetic field
 – Paramagnetism:
 • Disordered, unpaired spins align in magnetic field
 – Magnetic order:
 • Unpaired atomic moments spontaneously order at low T
 • Adjacent moments parallel: ferromagnets
 • Adjacent moments antiparallel: antiferromagnets (ferrimagnets)
Sources of Magnetic Fields

- Circulating current creates magnetic moment
 - For a closed current loop of area A:
 - Magnetic moment: $m = IAn$
 - For solenoid of N turns per meter:
 - Magnetic field: $H = NIn$

- Spinning electron creates magnetic moment
 - $m = m_B$ (Bohr magneton)
Basic Relations for the Magnetic Field

- Magnetic field: \(H \)
- Magnetic flux: \(B \)
 \[
 B = \mu \mu_0 H \\
 \mu \geq 0 \text{ (=1 in free space)}
 \]
- Magnetization in material: \(M \)
 \[
 B = \mu_0 \left(H + M \right)
 \]
- Magnetic susceptibility: \(\chi \)
 \[
 M = \chi H \\
 \mu = 1 + \chi
 \]

Boundary conditions:
- Normal: \(B = \mu_0(H+M) \) is continuous
- Transverse: \(H = (B/\mu_0) - M \) is continuous
Magnetism in Valence Metals

- Diamagnetism (Cu, Au, Zn, Hg)
 - Magnetic (“Lorenz”) force ⇒ eddy currents
 - \(\mathbf{m} \) of current loop opposes \(\mathbf{B} \) (decreases \(\mathbf{H} \))
 - \(\chi < 0 \) but small (except in superconductors)

- Band paramagnetism (Al)
 - Electron moment (\(\mathbf{m}_B \)) preferentially aligns with \(\mathbf{B} \)
 - Increases electrons with parallel spins
 - \(\chi > 0 \) but small
Core Magnetism: Transition Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Configuration</th>
<th>Spin Magnetic Moment (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>3d(^1)4s(^2)</td>
<td>(m = 1m_B)</td>
</tr>
<tr>
<td>Ti</td>
<td>3d(^2)4s(^2)</td>
<td>(m = 2m_B)</td>
</tr>
<tr>
<td>V</td>
<td>3d(^3)4s(^2)</td>
<td>(m = 3m_B)</td>
</tr>
<tr>
<td>Cr</td>
<td>3d(^5)4s(^1)</td>
<td>(m = 5m_B)</td>
</tr>
<tr>
<td>Mn</td>
<td>3d(^5)4s(^2)</td>
<td>(m = 5m_B)</td>
</tr>
<tr>
<td>Fe</td>
<td>3d(^6)4s(^2)</td>
<td>(m = 4m_B)</td>
</tr>
<tr>
<td>Co</td>
<td>3d(^7)4s(^2)</td>
<td>(m = 3m_B)</td>
</tr>
<tr>
<td>Ni</td>
<td>3d(^8)4s(^2)</td>
<td>(m = 2m_B)</td>
</tr>
<tr>
<td>Cu</td>
<td>3d(^{10})4s(^1)</td>
<td>(m = 0)</td>
</tr>
</tbody>
</table>
Core Magnetism

- **High temperature:**
 - Spins disordered \Rightarrow paramagnetism

- **Low Temperature ($T < T_c$)**
 - Spins align = ferromagnetism
 - Elements: Fe, Ni, Co, Gd, Dy
 - Alloys and compounds: AlNiCo, FeCrCo, SmCo$_5$, Fe$_{14}$Nd$_2$B
 - Like spins alternate = antiferromagnetism
 - Unlike spins alternate = ferrimagnetism
 - Compounds: Fe$_3$O$_4$ (lodestone, magnetite), CrO$_3$, SrFe$_2$O$_3$

- Ferromagnetic (and ferrimagnetic) materials have engineering applications
Ferromagnetism is Uncommon

Ferromagnetic elements are uncommon but several other elements form ferromagnetic or ferrimagnetic compounds.
Ferromagnetism

- Ferromagnetism occurs by mutation at T_c (Curie T)
- Energy is minimized by ordering spins into “domains”
 - Net moment, \mathbf{M}, would cause external field, increase energy
 - Magnetic domains cancel so that $\mathbf{M} = 0$
 - Natural ferromagnetism does not produce net magnetic field
Ferromagnetism

- To magnetize a ferromagnet, impose H
 - Domains move to align M and H
 - Defects impede domain motion
 - Moment (M_r) retained when H removed

- Magnetic properties
 - $M_s =$ saturation magnetization
 - All spins aligned with field
 - $M_r =$ remanent magnetization
 - Useful moment of permanent magnet
 - $H_c =$ coercive force
 - Field required to “erase” moment
 - Area inside curve = magnetic hysteresis
 - Governs energy lost in magnetic cycle
Hard Magnets: High Field

- Strong natural magnet: maximize M_s
 - AlNiCo - $M_s \approx 1.0$ T
 - Sm(Co,Fe,Cu,Zr)$_8$ - $M_s \approx 1.2$ T
 - Fe$_{14}$Nd$_2$B - $M_s \approx 1.3$ T

- Microstructural obstacles: maximize M_r/M_s
 - Fine domain size
 - Grain size
 - Particle size (free particle or embedded precipitate)
 - Defects and non-magnetic inclusions
Hard Magnets: Magnetic Memory

• Magnetic elements on disc, tape or surface
 – Isolated, individual particles; field orientation records information
 – Magnetic elements:
 • Hard for good “memory”
 • Not too hard, for erasure and re-write

• Media characteristics
 – Generally magnetic oxides for shape and chemical stability
 – Size less than minimum domain size for “hardness”
 – Perpendicular recording difficult, but provides high density
“Soft” Magnets

- “Soft” magnetic materials
 - Small hysteresis loop
 - Low energy losses per cycle
 - Optimized for cyclic machinery
 - Generators, transformers
 - Motors
 - Read-write heads
 - Electromagnetic shielding

- Materials requirements
 - Magnetic isotropy
 - Low energy required to rotate moment
 - Homogenous, “defect-free” microstructure
 - Large grain size
 - Large-grained Fe-Si “transformer” steel
 - Amorphous “metallic glasses”
 - Electrical insulation minimizes electrical losses
 - Ferrites (Fe₂O₃, LiFe₂O₃)
Piezomagnetism (Magnetostriction)

- Magnetic field ⇔ elastic strain
 - Magnetic ⇔ mechanical
 - Can reach very high frequency
 - Small energy requirements

- Piezomagnetic transducers
 - High frequency oscillators
 - Sound recording
 - High quality speakers

- Materials
 - Ni
 - Ni-Fe (invar)
 - TbDyFe (terfenol)
Superconductivity

- Superconductivity = loss of electrical resistance

- Superconductors are not just good conductors
 - Electrons are “fermions”, obey Pauli Exclusion
 - Because of exclusion, all metals have resistance
 - Electron is excited to conduct
 - Loses energy on collision, returns to paired state
 - For superconductivity, must turn electrons into “bosons”
 - Electrons are paired into carriers with integral spin
 - Integral spin \Rightarrow boson
 - All carriers may be in the same ground state

- Applications
 - Conductors: high field magnets, storage devices, transmission
 - Junctions: Josephson junctions used in detectors (SQUIDS)