Low gap amorphous GaN$_{1-x}$As$_x$ alloys grown on glass substrate

K. M. Yu,1,a S. V. Novikov,2 R. Broesler,1,3 Z. Liliental-Weber,1 A. X. Levander,1,3 V. M. Kao,1 O. D. Dubon,1,3 J. Wu,1,3 W. Walukiewicz,3 and C. T. Foxon4

1Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8197, USA
2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
3Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA

(Received 29 July 2010; accepted 19 August 2010; published online 9 September 2010)

Amorphous GaN$_{1-x}$As$_x$ layers with As content in the range of x=0.1 to 0.6 were grown by molecular beam epitaxy on Pyrex glass substrate. These alloys exhibit a wide range of band gap values from 2.2 to 1.3 eV. We found that the density of the amorphous films is \sim0.8–0.85 of their corresponding crystalline value. These amorphous films have smooth morphology, homogeneous composition, and sharp well defined optical absorption edges. The measured band gap values for the crystalline and amorphous GaN$_{1-x}$As$_x$ alloys are in excellent agreement with the predictions of the band anticrossing model. The high absorption coefficient of $\sim10^5$ cm$^{-1}$ for the amorphous GaN$_{1-x}$As$_x$ films suggests that relatively thin films (on the order of 1 μm) are necessary for photovoltaic application. © 2010 American Institute of Physics. [doi:10.1063/1.3488826]

It is well established that dramatic restructuring of the electronic bands can be achieved by alloying the anions of a semiconductor with elements of very different electronegativity and/or size. These alloys—the so called highly mismatched alloys (HMAs) (Ref. 1) have electronic and optical properties very different from their original host materials. These unusual properties arise from the restructuring of the conduction (valence) band of the alloys due to the anticrossing interaction between localized impurity states and the extended conduction (valence) band states of the matrix, as described by the band anticrossing model (BAC).1,2 Typically only dilute HMAs (up to \sim10%) can be grown due to large miscibility gaps arising from the large differences in atomic size and electronegativity of the host and the alloying elements. Notable examples of dilute HMAs that have been explored in recent years include dilute As-rich2–5 and N-rich GaN$_{1-x}$As$_x$ (Refs. 6–8) and dilute Te-rich ZnO$_x$Te$_{1-x}$.9

Recently, we have demonstrated the growth of GaN$_{1-x}$As$_x$ alloys with a limited range of x on standard microscope glass slides at growth temperature below 250 °C.12 In this paper we report the structural and optical properties GaN$_{1-x}$As$_x$ alloys grown on Pyrex glass substrates by LT-MBE over a wide range of composition ($x=0.1$ to 0.6).

All GaNAs samples were grown on 2 in. Pyrex substrates by plasma-assisted MBE in a MOD-GENII system. The system has a HD-25 Oxford Applied Research RF activated plasma source to provide active nitrogen and elemental Ga is used as the group III-source. In all experiments we have used arsenic in the form of As$_2$ produced by a Veeco arsenic valved cracker. For the growth of all GaNAs samples, we have used the same active N flux with the total N beam equivalent pressure (BEP) $\sim1.5 \times 10^{-5}$ Torr and the same deposition time (2 h) for the majority of the films. Since the Pyrex substrate is transparent, the growth temperature cannot be measured directly by a pyrometer. From the heater current we estimate the growth temperature to be in the range of 200–800 °C.

The composition and crystallinity of the films were measured by combined Rutherford backscattering spectrometry (RBS) and particle induced x-ray emission (PIXE) using a 2 MeV He ion beam and x-ray diffraction (XRD), respectively. The microstructure of the GaN$_{1-x}$As$_x$ films was investigated using cross sectional transmission electron microscopy. A JEOL 3010 with 300 keV accelerating energy and a resolution of 2.4 Å, JEOL CM300 with sub-Angstrom resolution and a Philips Tecnai microscope for Z-contrast high resolution studies were used.

The band gaps of the films were measured using photo-modulated reflectance (PR) at room temperature. Radiation from a 300 W halogen tungsten lamp dispersed by a 0.5 m monochromator was focused on the samples as a probe beam. A chopped HeCd laser beam ($\lambda=442$ or 325 nm) provided the photomodulation. PR signals were detected by a Si or Ge photodiode using a phase-sensitive lock-in amplification system. The values of the band gap and the line width were determined by fitting the PR spectra with the Aspnes third-derivative functional form.13 The PR measured band

References

1K. M. Yu,1,a S. V. Novikov,2 R. Broesler,1,3 Z. Liliental-Weber,1 A. X. Levander,1,3 V. M. Kao,1 O. D. Dubon,1,3 J. Wu,1,3 W. Walukiewicz,3 and C. T. Foxon4

Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8197, USA

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA

Electronic mail: kmyu@lbl.gov.

It is well established that dramatic restructuring of the electronic bands can be achieved by alloying the anions of a semiconductor with elements of very different electronegativity and/or size. These alloys—the so called highly mismatched alloys (HMAs) (Ref. 1) have electronic and optical properties very different from their original host materials. These unusual properties arise from the restructuring of the conduction (valence) band of the alloys due to the anticrossing interaction between localized impurity states and the extended conduction (valence) band states of the matrix, as described by the band anticrossing model (BAC).1,2 Typically only dilute HMAs (up to \sim10%) can be grown due to large miscibility gaps arising from the large differences in atomic size and electronegativity of the host and the alloying elements. Notable examples of dilute HMAs that have been explored in recent years include dilute As-rich2–5 and N-rich GaN$_{1-x}$As$_x$ (Refs. 6–8) and dilute Te-rich ZnO$_x$Te$_{1-x}$.9

Recently, we have demonstrated the growth of GaN$_{1-x}$As$_x$ alloys with a limited range of x on standard microscope glass slides at growth temperature below 250 °C.12 In this paper we report the structural and optical properties GaN$_{1-x}$As$_x$ alloys grown on Pyrex glass substrates by LT-MBE over a wide range of composition ($x=0.1$ to 0.6).

All GaNAs samples were grown on 2 in. Pyrex substrates by plasma-assisted MBE in a MOD-GENII system. The system has a HD-25 Oxford Applied Research RF activated plasma source to provide active nitrogen and elemental Ga is used as the group III-source. In all experiments we have used arsenic in the form of As$_2$ produced by a Veeco arsenic valved cracker. For the growth of all GaNAs samples, we have used the same active N flux with the total N beam equivalent pressure (BEP) $\sim1.5 \times 10^{-5}$ Torr and the same deposition time (2 h) for the majority of the films. Since the Pyrex substrate is transparent, the growth temperature cannot be measured directly by a pyrometer. From the heater current we estimate the growth temperature to be in the range of 200–800 °C.

The composition and crystallinity of the films were measured by combined Rutherford backscattering spectrometry (RBS) and particle induced x-ray emission (PIXE) using a 2 MeV He ion beam and x-ray diffraction (XRD), respectively. The microstructure of the GaN$_{1-x}$As$_x$ films was investigated using cross sectional transmission electron microscopy. A JEOL 3010 with 300 keV accelerating energy and a resolution of 2.4 Å, JEOL CM300 with sub-Angstrom resolution and a Philips Tecnai microscope for Z-contrast high resolution studies were used.

The band gaps of the films were measured using photo-modulated reflectance (PR) at room temperature. Radiation from a 300 W halogen tungsten lamp dispersed by a 0.5 m monochromator was focused on the samples as a probe beam. A chopped HeCd laser beam ($\lambda=442$ or 325 nm) provided the photomodulation. PR signals were detected by a Si or Ge photodiode using a phase-sensitive lock-in amplification system. The values of the band gap and the line width were determined by fitting the PR spectra with the Aspnes third-derivative functional form.13 The PR measured band...
gap of the GaNAs alloys is further confirmed by absorption spectroscopy using a LAMBDA-950 UV/Vis/NIR spectrophotometer over the range of 190–3300 nm.

Figure 1 shows the As mole fraction (x) in GaN1−xAsx films measured by RBS/PIXE as a function of growth temperature under high (BEP=1.1 ×10−7 Torr) and low (BEP=7.1×10−8 Torr) Ga flux condition. A monotonic increase in the As incorporation in the film is observed as the growth temperature is reduced. We found that GaN1−xAsx films have smooth morphology and uniform composition under lower Ga flux conditions. XRD measurements show that all films grown at temperatures lower than 500 °C are amorphous. While the GaN1−xAsx films are amorphous in the composition range of 0.17 ≤ x ≤ 0.79 when grown on sapphire substrate,11 for films grown on Pyrex substrates, the composition range for amorphous alloys extends to x ~ 0.1.

Figures 2(a) and 2(b) show the cross-sectional TEM micrographs for two GaN1−xAsx samples with x=0.45 and 0.15. Both films show abrupt interfaces with the Pyrex substrate and a smooth surface. High resolution TEM micrographs [Figs. 2(f) and 2(g)] show “pepper and salt” contrast typical of amorphous structure without any local fringe images corresponding to the medium range structure. This contrast uniformity is observed starting from the interface to the sample surface indicating structural homogeneity of both samples. The amorphous nature of the films is also confirmed by selected area electron diffraction pattern (SAD) taken under parallel beam illumination [Figs. 2(c)–2(e)]. Halo rings are observed demonstrating that samples are amorphous. The diameter of the first halo rings in the SAD patterns from the two films are slightly different, with a smaller diameter for the sample with x=0.45 compared to the sample with x =0.15. This different in the halo ring diameter is consistent with the expected difference in the pair correlation function due to compositional change in the two samples. Moreover, a very weak intensity second ring is also observed for both these samples at higher scattering angles. A comparison of the areal densities measured by RBS and thickness values measured by TEM reveals that the density of the amorphous films is ~0.79 and 0.85 of their corresponding crystalline value (using Vegard’s law) for GaN1−xAsx films with x =0.45 and 0.15, respectively.

The critical optical transitions of the GaN1−xAsx samples were measured using PR spectroscopy. Figure 3 shows a series of PR spectra from amorphous GaN1−xAsx samples with x=0.15–0.45. A gradual decrease in the GaN1−xAsx band gap as x increases is clearly shown. These band gap values are further confirmed by optical absorption measurements that showed sharp absorption edges for all the amorphous films with absorption coefficient ~1×105 cm−1 at ~0.5 eV above the band gap. The inset of Fig. 3 compares the PR and absorption spectra from a GaN0.76As0.24 sample. The clear observation of the PR signal indicates an extended
rather than localized nature of the band edge states. This is also consistent with an abrupt onset of the absorption edges and an absence of defused absorption tails that are typical in amorphous silicon.

The band gap as measured by PR on the GaN$_{1-x}$As$_x$ films grown on Pyrex are shown in Fig. 4 together with data taken from films grown on sapphire. Band gap values for dilute alloys (As-rich and N-rich GaNAs) from the literature are also presented. The composition dependence of the band gap of GaN$_{1-x}$As$_x$ alloys based on the BAC is also shown.

Calculated composition dependence of the band gap of GaN$_{1-x}$As$_x$ alloys based on the BAC is also shown.

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the University of Nottingham was undertaken with support from the EPSRC (Grant Nos. EP/G046867/1, EP/G030634/1, and EP/I004203/1).

