Mechanical Properties

- Elastic deformation
- Plastic deformation

- Fracture
 - Fatigue
 - Environmental crack growth
Crack Instability

• The critical crack length for given σ_a

\[a_c = Q^{-2} \left[\frac{K_{lc}}{\sigma_a} \right]^2 \]

• Sources of the critical crack
 – Manufacturing defects
 – Crack growth in service
 • Fatigue
 • Corrosion (H-embrittlement)
Crack Growth to Failure

- Crack growth mechanisms
 - Fatigue (cyclic load)
 - Corrosive crack growth (hydrogen)

- Characteristic pattern:
 - Initiating flaw
 - Defect or corrosion pit
 - Nucleated defect (fatigue)
 - Crack growth to critical size
 - Identify by characteristic fracture mode
 - Corrosion: often intergranular
 - Fatigue: “beach marks”, “striations”
 - Final failure at critical size
 - Crack length $a = a_c$
 - Crack mechanism = expected unstable mode
 - Usually ductile fracture
Example: Failure of a High-Strength Steel Spring in Seawater

- Initiation at a corrosion pit
- Significant 2nd stage growth
 - Intergranular mode
- Final fracture at expected a_c
 - Ductile mode
Fatigue

- Phenomenology
 - Cyclic load causes failure at stresses well below ultimate strength
 - Failure is often sudden after a long period of use
 - Material grows “tired” from accumulated wear and tear
 - (Like students and professors, at the tail end of a long semester)

- Two distinct situations:
 - Growth of a pre-existing crack
 - Nucleation and growth of a fresh crack
Fatigue Crack Growth

- **Driving force**
 - Cyclic applied stress ($\Delta \sigma_a$)
 - Cycles crack tip stress ($\Delta \sigma_T$)

- **Growth mechanism**
 - Plastic deformation irreversible
 - Due to hardening
 - Deformation cycle grows crack
 - LeChatelie’s Principle

- **Implications**
 - Crack growth rate $\propto \Delta \sigma_T$
 - Or $\Delta K = \Delta \sigma_T \sqrt{\rho}$
 - Crack grows in steps
 - Leaves marks on fracture surface
 - “fatigue striations”
 - “beach marks”
Fatigue: Microscopic Appearance

- Fatigue striations in SEM
 - Not always visible - best in low-strength materials
 - Sometimes only one per cycle
 - Can compute crack growth rate and back out stress
Fatigue Crack Growth Rate

- Crack growth driven by ΔK
 \[\Delta K = Q(\Delta \sigma_a)\sqrt{a} \]
 - No growth below threshold (ΔK_{th})
 - Power law at intermediate ΔK
 \[\frac{da}{dn} = A(\Delta K)^m \] - “Paris Law”
 - $m \sim 2$ for steels
- Crack tip acceleration
 - As a increases, ΔK increases
 - Crack growth rate accelerates
 - Often have very rapid growth near a_c
 - Crack is not safe because it is small
Fatigue: Macroscopic Appearance

- Crankshaft fatigue in an aircraft engine
 - Pre-existing cracks
 - Visible beach marks
 - Instability and failure
Fatigue via Crack Nucleation and Growth

- Assume no meaningful pre-existing crack
- Cyclic deformation to failure
 - Life (cycles) decreases exponentially with cyclic stress amplitude
 - For about 90% of life, damage accumulates without cracking
 - At about 90% of life, cracks nucleate and grow to failure
- Fatigue limit
 - No growth in 10^8 cycles when $\Delta \sigma < \Delta \sigma_f$
Fatigue Damage

• Prior to crack nucleation
 – Increase in dislocation density
 – Reconfiguration of dislocations (well-defined dislocation “cells”)
 – Damage is internal, very difficult to detect

• Eventual crack nucleation at well-developed cell walls

P. Lukas et al. Z. Metallkd. 56 (1965) 109
Low-Cycle Fatigue

- Crack nucleation, growth and failure in a Ti rod
 - Loaded a few hundred cycles in tension and torsion
Defeating Fatigue: Design for Infinite Life

- Cyclic stress below fatigue limit
 - Asymptote on s-n curve
 - Cyclic s like that in service
 - Note s_1 is a median value
 - $s \ll s_1$ for confidence

- Cyclic stress intensity below threshold
 - Combination of stress and crack size
 - Requires inspection

\[
\Delta K = Q\Delta \sigma \sqrt{a}
\]

\[
a_t = Q^{-2} \left[\frac{\Delta K_t}{\Delta \sigma} \right]^2
\]
Defeating Fatigue: Design for Safe Life

- From s-n curve
 - Restrict allowed cycles to safe value
 - Problems:
 - counting meaningful cycles
 - no good NDE before cracking

- From crack growth curve
 - Use NDE
 - Assume worst possible flaw (a_0)
 - Choose “safe” inspection interval (n')
 - Use NDE
 - Restart clock if no flaw detected
 - Retire or repair if flaw detected