The Electromagnetic Properties of Materials

• Electrical conduction
 – Metals
 – Semiconductors
 – Insulators (dielectrics)
 – Superconductors

• Magnetic materials
 – Ferromagnetic materials
 – Others

• Photonic Materials (optical)
 – Transmission of light
 – Photoactive materials
 • Photodetectors and photoconductors
 • Light emitters: LED, lasers
The Electromagnetic Properties of Materials

• Electrical conduction
 – Metals
 – Semiconductors
 – Insulators (dielectrics)
 – Superconductors

• Magnetic materials
 – Ferromagnetic materials
 – Others

• Photonic Materials (optical)
 – Transmission of light
 – Photoactive materials
 • Photodetectors and photoconductors
 • Light emitters: LED, lasers
Insulators (Dielectrics)

- **Characteristics:**
 - Large band gap (> 2 eV)
 - Very low conductivity

- **Engineering uses**
 - Separate conductors
 - No leakage current
 - No interference
 - Support electric fields
 - Store energy (capacitors)
 - Induce charge (MOSFET)
Insulators: Material Properties

- Ability to insulate \Rightarrow critical field (E_c)
 - Insulator separates conductors until E reaches E_c

- Support internal field \Rightarrow dielectric constant (ε)
 - High ε \Rightarrow high induced charge for given voltage
 - Capacitors: high ε \Rightarrow efficient energy storage
 - Oxide in MOSFET: high ε \Rightarrow low switching voltage
 - Low ε \Rightarrow small induced charges
 - “low-k” insulators essential for microelectronic packaging

- Energy dissipation from current \Rightarrow loss tangent (δ)
 - Low δ \Rightarrow low rate of energy loss from propagating e-m fields
Insulators: Breakdown Voltage

- Insulator protects until
 - E reaches E_c “breakdown”
 - Catastrophic increase in j at E_c
 - Example: lightning

- Common “cascade mechanism”
 - Electron accelerated in field
 - Excites new carriers by collision
 - These accelerate in chain reaction

- Material and microstructure variables
 - Band gap: E_c increases with E_G
 - Purity: E_c usually increases with purity
 - Temperature: minimum at intermediate T
 - Few carriers at low T
 - Low mobility at high T
Dielectrics

- Dielectrics (insulators) support internal fields
 - The “dielectric constant” relates field to charge
 - Sometimes use “susceptibility” $\chi = \varepsilon - 1$ ($\chi = 0$ in free space)

\[Q = CV \]
\[\sigma A = C(Ed) \]
\[\sigma = D = \varepsilon \varepsilon_0 E \]

$C = \text{capacitance}$
$D = \text{electric displacement}$
$\varepsilon \geq 1$ (= 1 in free space)
Source of the Dielectric Constant

- **Internal polarization**
 - Dipoles align in applied field
 - Create reverse field (E_I)

\[\varepsilon_0 E = \varepsilon_0 E_0 - \varepsilon_0 E_I = \sigma - P \]

\[P = \sum_i p_i = \chi E \]

\[D = \sigma = \varepsilon_0 E + P = \varepsilon\varepsilon_0 E \]

\[\varepsilon = 1 + \frac{P}{\varepsilon_0 E} \]
Polarization Mechanisms

• Space charges
 – Porous materials (large pores)
 – Slow response in insulators

• Molecular dipoles
 – Large polar organics have big ε
 – Relatively slow response (like diffusion)

• Ionic displacements
 – Ionic crystals have moderate ε
 – Fast response (like optical phonon)

• Atomic dipole
 – Small ε
 – Very fast response (plasmon frequency)
Influence of the Dielectric Constant

- For given σ (Q) increasing ε decreases field (E)
- For given voltage drop (E), increasing ε increases Q (σ)
 - Energy stored in a capacitor increases with ε
 - Induced charge between adjacent conductors increases with ε
 - MOSFET oxides need maximum ε
 - Insulators in microelectronic packaging need minimum ε
 - Both are major objectives in modern microelectronics
 - (many jobs, much money)

$$U = \frac{1}{2} DE = \frac{1}{2} \varepsilon \varepsilon_0 E^2$$
Ultra-low Dielectric Constant

- For a given voltage drop (E), increasing ε increases $Q (\sigma)$
 \Rightarrow Induced charge increases with ε

- “Low-k” materials
 - Critical for applications in electronic packaging

- Materials design
 - Organics based on non-polar molecules
 - Dense array of nanopores ($\varepsilon = 1$)

- Materials issues
 - Mechanical integrity - must support device
High Dielectric Constant - Ferroelectricity

- **Ferroelectric materials**
 - BaTiO_3 (for example)
 - Effective CsCl

- **At high T ($T > T_c$)**
 - Central ion centered
 - No dipole moment

- **At low T ($T < T_c$)**
 - Central ion displaces to create dipole
 - All neighboring cells displace parallel
 \Rightarrow Large net dipole moment
The Electromagnetic Properties of Materials

• Electrical conduction
 – Metals
 – Semiconductors
 – Insulators (dielectrics)
 – Superconductors

• Magnetic materials
 – Ferromagnetic materials
 – Others

• Photonic Materials (optical)
 – Transmission of light
 – Photoactive materials
 • Photodetectors and photoconductors
 • Light emitters: LED, lasers
The Optical Properties of Materials: Photonic Materials

- **Beauty**: one-half of the earliest materials science
 - Pottery glazes (the origin of metals), paints and cosmetics
 - Jewelry - the development of metals and metalworking

- **Information**
 - Window glass
 - Optical fibers (rapidly replacing copper wire)

- **Light**
 - The electric light
 - LEDs and Lasers
 - Photodetectors and photoconductors

- **Power**
 - Photovoltaics (solar cells)
 - Laser power transmission (welding, surface treatments)
The Optical Properties of Materials: Photonic Materials

• “Optical” means the whole electromagnetic spectrum
 – From radio waves to γ-rays
 – Can be regarded as
 • Waves in space
 • Particles with quantized energies

• Light as waves
 – Refraction and reflection at an interface (windows, light pipes, solarium)
 – Absorption and scattering (optical fibers)
 – Diffraction (x-ray and electron crystallography)

• Light as particles
 – Transmission and absorption
 – Photodetectors and photoconductors: switches, photocopiers
 – Photoemitters: LEDs and lasers
Electromagnetic Waves in Free Space

- Wave carries electric and magnetic fields
 - Oriented perpendicular to the direction of propagation
 - Wave:
 \[E = E_0 \exp[-i(kx - \omega t)] \]
 - Particle:
 \[\epsilon = h \nu = \hbar \omega \]

\[k = \frac{2\pi}{\lambda} \] (\(\lambda = \) wavelength)
\[\omega = 2\pi \nu \] (\(\nu = \) frequency)
\[\frac{\omega}{k} = \nu \lambda = c \]
\(c = \) speed
The Electromagnetic Spectrum

- **Visible light:**
 - $\lambda \sim 0.4$-1 μm
 - $E \sim 1.2$-3 eV
Light as a Wave

- Propagation through free space at velocity, c

- When light enters a material, it is
 - Refracted
 - Reflected
 - Attenuated

![Diagram of light wave with incident, reflected, and transmitted waves]
Refraction and Reflection at an Interface: Normal Incidence

• Refraction:
 – Wave "drags" charges
 – Friction slows propagation

• Index of refraction (n)
 – Property governing refraction
 – Related to dielectric constant:

\[
E = E^0 \exp[-i(kx - \omega t)]
\]

\[
k = nk_0 \implies \lambda = \frac{\lambda_0}{n}
\]

\[
v = \frac{\omega}{k} = \frac{c}{n}
\]

\[
n = \sqrt{\varepsilon}
\]

– Depends on frequency (dispersion)

\[
n = n(\omega) = \sqrt{\varepsilon(\omega)}
\]
Refraction at an Interface

• **Snells’ Law**
 \[n_1 \sin \phi_1 = n_2 \sin \phi_2 \]
 – Light bends toward low-n region

• **The critical angle**
 – Light cannot exist region 1 if
 \[\phi_2 > \phi_c = \sin^{-1}\left(\frac{n_1}{n_2}\right) \]
 – Principle of “light pipe”

Optical fiber confines light by reflection
Reflection at an Interface

- Normal incidence from n_1 to n_2
 - $\Delta n \Rightarrow$ reflection
 - Intensity thrown back

- Reflected intensity
 \[R = \frac{I_r}{I_i} = \frac{(n_2 - n_1)^2}{(n_2 + n_1)^2} \]

- Transmitted intensity
 \[T = \frac{I_t}{I_i} = 1 - R = \frac{4n_2}{(n_1 + n_2)^2} \]

- Note: depends on Δn
 - Not transparency
Propagation of Light: Attenuation

- I_T is gradually attenuated
- Mechanisms of attenuation
 - Absorption
 - Rayleigh scattering
- Mechanisms of absorption
 - Conduction electrons
 - Phonons
 - Electronic transitions
 - Valence
 - Core

\[I_T = I_0 \exp[-\eta x] \]
Absorption: Insulator or Semiconductor

- Absorption by
 - Optical phonons (solar panels)
 - Ionic transitions (color)
 - Band transitions (photoconductivity)
 - Core transitions (x-ray spectroscopy)
Attenuation: Rayleigh Scattering

- Light scatters from heterogeneities
 - Density fluctuations
 - Chemical heterogeneities
 - Defects and second-phase particles

- Only recently is it possible to produce clear, uniform glass
 - “As through a glass - darkly”
Diffraction

- Waves reflected from successive planes
 - Destructive interference unless
 - Bragg’s Law \(\Rightarrow \) strong intensity peak
 - \[n\lambda = 2d \sin \theta \] (Bragg’s Law)

- Pattern of diffraction peaks identifies crystal structure
 - Use x-rays or electrons with \(\lambda \) of a few Å
Electron Diffraction of “Intercritically Tempered Steel”

- Electron microscopy
 - Photograph
 - Diffraction pattern

- Diffraction pattern
 - Peaks from crystal planes
 - Pattern identifies phases
 - Ex.: bcc and fcc Fe present

- Combined analysis
 - “Bright field” microstructure
 - Diffraction pattern shows phases
 - “Dark field” locates phases
 - Image diffraction spot
Exploiting the Light as a Wave: Examples

- **Optical fibers**
 - Transparent pipes that transmit light
 - Note that “light” need not be visible
 - GaAs systems operate in the infrared

- **Greenhouses and solar heaters**
 - Glass containers that let light in,
 - Then trap its energy for heat
Optical Fibers

- **Require**
 - Small diameter to minimize surface loss
 - Perfect cylinder to minimize surface scattering
 - Exceptional purity to suppress absorption
 - Exceptional uniformity to suppress Rayleigh scattering

- **Gradient fibers**
 - Rays that reflect from surface travel farther than rays on-axis
 - Loss of coherence and information
 - Want gradient in n such that n lower on outside
 - Rays that reflect from surface move faster
 - Can adjust n with solute additions
Absorption:
The “Greenhouse” Effect

- Absorption by
 - Optical phonons (solar panels)
 - Ionic transitions (color)
 - Band transitions (photoconductivity)
 - Core transitions (x-ray spectroscopy)
The Solarium and Solar Heater

- Mechanism is glass
 - transparent in the visible
 - Opaque in the infrared

- Sunlight enters
 - Rays are absorbed and re-emitted in the infrared
 - Re-emitted rays cannot penetrate glass
 - Solar energy is trapped inside
Light as a Particle: Photons

• Transparency and color

• Photodetectors
 – Photoconductors
 – Photoelectronics
 – Photocopiers

• Photoemitters
 – Phosphors
 – Light-emitting diodes (LED)
 – Lasers